13th June 2014

Storage Performance Basics & Considerations
Why this webcast?

- Giving you the basics of storage performance calculation
- Showing you the potential pitfalls
- Enabling you to build configurations based on customer requirements
- Making you more competitive
- Helping you to avoid customer escalations because of performance problems
What this short Webcast is NOT about:

- It's not a technical deep dive into performance tuning
- It's not a technical training how to fix existing performance problems
- It's not a session to discuss performance related competitive information
- It's not a training how to use the Fujitsu tools to size and create configurations (special Webcasts available)
- We only take a look into the storage, not the infrastructure, not in the host, into the network, the OS or the application
What this short Webcast IS about:

- Basic understanding about storage performance
- Understanding the pros and cons of different media and raid levels
- Basic understanding of AST and Thin Provisioning and how it impacts performance
- Giving general rules of thumb to create valid configurations, based on customer requirements

→ Explanations are simplified to make it easier
Topic

- Media types and their characteristics
- Raid Levels and their performance impact
- Basic IO calculation and impact of cache
- Thin Provisioning Basics and best practices
- Automated Storage Tiering basic concept and considerations
Media Types
Base definitions

- **IOPs (random or sequential)**
 - Input / Output operations per second
 - e.g. a read or a write

- **Block Size**
 - Size of a single IO to or from the host
 - Measured in kB

- **Throughput**
 - Amount of data going in or out of the storage
 - Measured in MB/s (IOs x block size = throughput)

- **Response time**
 - Time it takes until the server gets the data or acknowledge from the storage
SAS Drives

<table>
<thead>
<tr>
<th>2.5” SAS drive</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15,000 rpm, 12 Gbit/s</td>
<td></td>
</tr>
<tr>
<td>600 GB*</td>
<td>300 GB</td>
</tr>
<tr>
<td>10,000 rpm, 12 Gbit/s</td>
<td></td>
</tr>
<tr>
<td>Self-encrypting drive (SED)</td>
<td></td>
</tr>
<tr>
<td>1,200 GB</td>
<td>900 GB</td>
</tr>
<tr>
<td>Non-encrypting drive</td>
<td></td>
</tr>
<tr>
<td>1,200 GB</td>
<td>900 GB</td>
</tr>
</tbody>
</table>

- ~200 random IOs per 15k drive
- ~175 random IOs per 10k drive
- Performance is the same regardless of drive size
- No performance degradation of SEDs
NL-SAS Drives (aka SATA Drives)

- 7.200 rpm – high capacity drives
- ~75 random IOs per 3,5” drive
- ~85 random IOs per 2,5” drive
- No SEDs
- Performance is the same regardless of drive size
- Always think of IOs / TB.
- Rebuild time is critical

<table>
<thead>
<tr>
<th>Drive Size</th>
<th>Capacity</th>
<th>RPM</th>
<th>Data Transfer Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5” Nearline SAS drive</td>
<td>7,200 rpm, 12 Gbit/s</td>
<td>4.0 TB</td>
<td></td>
</tr>
<tr>
<td>2.5” Nearline SAS drive</td>
<td>7,200 rpm, 12 Gbit/s</td>
<td>3.0 TB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 TB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 TB</td>
<td></td>
</tr>
</tbody>
</table>
SSDs

2.5” SSD/3.5” SSD

<table>
<thead>
<tr>
<th>Capacity</th>
<th>DX: eMLC SSDs from Toshiba</th>
<th>~ 8000 IOPs (read) per SSD</th>
<th>~ 4500 IOPs mixed</th>
<th>Extremely fast response times</th>
<th>No moving parts</th>
<th>Low energy consumption</th>
<th>Best in read environments</th>
<th>Performance is the same regardless of drive size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,600 GB†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SED Self-Encrypting Drive
SSD Solid State Drive
Key take away for storage media types

- More drives = better performance
- For best €/TB use NL-SAS
- For best €/IO use SSDs
- NL-SAS are below 50% of what SAS drives can do
- NL-SAS are not as reliable SAS drives are
- NL-SAS drives requiring longer rebuild times
- IO/TB is a key indicator
Raid Levels
ETERNUS DX – RAID Level

<table>
<thead>
<tr>
<th>RAID Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>Divides data into blocks, and writes them to multiple drives in a dispersed manner (striping)</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Writes data to two drives simultaneously (mirroring)</td>
</tr>
<tr>
<td>RAID 1+0</td>
<td>Combination of RAID0 and RAID1, strips mirroring data</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Writes striping data and parity data created. Distributes parity data to multiple drives. Able to recover from one drive failure in the RAID array</td>
</tr>
<tr>
<td>RAID 5+0</td>
<td>Strips 2 groups of RAID5</td>
</tr>
<tr>
<td>RAID 6</td>
<td>Distributes two types of parities to different drives (double parity). Able to recover from two drive failures in the RAID array</td>
</tr>
</tbody>
</table>
Comparison of RAID Levels

<table>
<thead>
<tr>
<th>RAID Level</th>
<th>Reliability</th>
<th>Data efficiency</th>
<th>Write performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID1</td>
<td>Good</td>
<td>Very bad</td>
<td>Good</td>
</tr>
<tr>
<td>RAID1+0</td>
<td>Good</td>
<td>Very bad</td>
<td>Very Good</td>
</tr>
<tr>
<td>RAID5</td>
<td>Good</td>
<td>Good</td>
<td>bad</td>
</tr>
<tr>
<td>RAID5+0</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>RAID6</td>
<td>Very good</td>
<td>Bad</td>
<td>Very bad</td>
</tr>
</tbody>
</table>
Raid-5 write penalty

- Writing in a Raid-5:
 1. Read the old data
 2. Read the old parity
 3. Write the new data
 4. Write the new parity

This means that each write against a RAID-5 set causes four IOs against the disks where the first two must be completed before the last two could be performed, which introduces some additional latency.
Raid-6 write penalty

Writing in a Raid-6:

1. Read the old data
2. Read the old parity 1
3. Read the old parity 2
4. Write the new data
5. Write the new parity 1
6. Write the new parity 2

This means that each write against a RAID-6 set causes six IOs against the disks where the first two must be completed before the last two could be performed, which introduces some additional latency.
Raid-1(0) write penalty

- Writing in a Raid-1(0):
 1. Write the new data to drive 1
 4. Write the new data to drive 2

This means that each write against a RAID-1 set causes two IOs against the disks.
Raid group assignment

- Spread the RGs over all CMs
- Use min. 2 RGs in a system
- Use multiple Front end interfaces to connect the host for optimal performance
Key take away for raid levels

- Ensure to understand the IO profile of the customer or assume it (r/w: 80%/20% - 70%/30%)
- Writes are key!
- Raid-5 IO penalty is x4 for writes
- Raid-6 IO penalty is x6 for writes
- Raid-10 IO penalty is x2 for writes
- The bigger the raid group, the longer the rebuild (use Raid-50)
- The bigger the raid group, the better the (read) performance is
Key take away for raid levels

- Raid-10 is best practice for write intensive (50%+) applications
- Raid-5 (7+1) is best practice for SAS
- Raid-6 (6+2) or Raid-10 is best practice for NL-SAS
- Raid-5 (min. 1 RG per CM, up to 15:1) is best practice for SSDs
- All of the above is true in AST and Thin environments as well
- Raid Groups are belonging to one CM only – spread RGs among all CMs, create at least two RGs!
Basic IO Calculation
Customers requirements:

- # of TB
- # of IOs
- # of MB/s
- Required response time in ms
- Write portion?
- Block size?
- Peak or average?
Example 1:

- Customer asks for 40 TB of storage

- Solution 1:
 ETERNUS DX 100 with 32 x 2TB NL-SAS
 2,400 IOs – LP 51k€ - 60 IOs/TB

- Solution 2:
 ETERNUS DX 100 with 88 x 600 GB 10k
 15,400 IOs – LP 72k€ - 385 IOs/TB

Ask: # of IOPs and r/w ratio
Example 2:

- Customer asks for 40 TB and 20,000 IOs
- Assume a read / write ratio of 70% to 30% (or 80% to 20%), or ask
- Assume a block size of 4-16k, or ask

How to calculate:
Example 20.000 IOPs – 30% write – Raid-5

Reads: 14.000 IOs + Writes: 6.000 IOs = 20.000 IOs

Raid-5: 14.000 read + 24.000 write (penalty x4) = 38.000 IOs

→ 190 x 15k SAS drives
→ 218 x 10k SAS drives
→ 508 x 7.2k NL-SAS drives

100% Cache miss!

Best practice would be using 176 x 300GB 15k SAS drives = 42 TB usable
Example 20,000 IOPs – 30% write – Raid-6

Reads: 14,000 IOs + Writes: 6,000 IOs = 20,000 IOs

→ Raid-6: 14,000 read + 36,000 write (penalty x6) = 50,000 IOs

→ 250 x 15k SAS drives

→ 285 x 10k SAS drives

→ 667 x 7.2k NL-SAS drives

Best practice would be using 250 x 300GB 15k SAS drives = 50 TB usable – 10TB more than required

100% Cache miss!
Example 20.000 IOPs – 30% write – Raid-10

Reads: 14.000 IOs + Writes: 6.000 IOs = 20.000 IOs

→ Raid-10: 14.000 read + 12.000 write (penalty x2) = 26.000 IOs

→ 130 x 15k SAS drives
→ 150 x 10k SAS drives
→ 346 x 7.2k NL-SAS drives

Best practice would be using 152 x 600GB 10k SAS drives = 42 TB usable
Example 20,000 IOPs – 30% write

- Solution 1 Raid-5:
 ETERNUS DX 200 with 176 x 300GB 15k
 LP 148k €

- Solution 2 Raid-6:
 ETERNUS DX 200 with 250 x 300GB 15k
 LP 205k €

- Solution 3 Raid-10:
 ETERNUS DX 200 with 150 x 600GB 10k
 LP 120k €

100% Cache miss!
Impact of Cache
Base definitions

- **Read cache**
 - Data is put in cache after initial read from disk
 - Cache read hit occurs, if the same data block is read by the server, or by another server again

- **Write cache**
 - Data is put into cache and is destaged to disk later on, write is acknowledged if data arrives in cache, not if it arrives on disk
 - With ETERNUS DX every write is a cache hit by definition, you can't bypass cache.
 - Cache write hit within ETERNUS DX means write cache RE-hit
 - Cache write hit occurs if the same data block is changed BEFORE it has been written to physical disk
Key take away for Cache impact

- Cache effectiveness is very application specific, but from a "box" level you can use averages.
- The more cache, the better the performance is.
- Adjusting cache hit parameters is influencing the configuration calculation heavily.
- In general ETERNUS DX is providing a big amount of cache, self tuning for reads and writes, with a very effective cache algorithm, allowing higher cache hit rates.
Key take away for Cache impact

- Read Cache hit rate should be assumed from 30%-75% depending on system, cache size and application
- Write Re-hit Cache rate should be assumed from 10%-25% depending on system, cache size and application
- Physical (read)Cache be enhanced up to 5,6 TB of Flash with PCIe based Extreme Cache option (DX500 & DX600)
Example 20,000 IOPs – 30% write – Raid-5

Reads: 14,000 IOs + Writes: 6,000 IOs = 20,000 IOs

Raid-5: 8,400 read + 20,400 write (penalty x4) = 28,800 IOs

→ 144 x 15k SAS drives vs. 190 drives
→ 165 x 10k SAS drives vs. 218 drives
→ 384 x 7.2k NL-SAS drives vs. 508 drives

Best practice would be using 168 x 300GB 10k SAS drives = 40 TB usable = LP 98k € vs. 148k /120k € with 100% cache miss
Data mirroring
Data Mirroring and Replication

- Write is acknowledged if data arrives in Cache of secondary system (synchronous)
- Write is acknowledged if write arrives in cache of primary system (asynchronous)
Key take away for data mirroring

- Synchronous data mirroring does not make it faster!
- Write response time goes up 100% by definition!
- Write performance will potentially go down
- Reads are not affected, because serviced by local site
- Avoid this, use asynchronous data replication, for the price of some (small) data loss
Thin provisioning basics
Thin Pools are made out of raid groups

Select a RAID group to configure a pool

- Select one RAID group type to configure a pool (TPP).
- Selectable RAID types are as follows:

<table>
<thead>
<tr>
<th>RAID Type</th>
<th>Number of member disk drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance (RAID1+0)</td>
<td>4, 8, 16, 24</td>
</tr>
<tr>
<td>High Capacity (RAID5)</td>
<td>4, 5, 8, 9, 13</td>
</tr>
<tr>
<td>High Reliability (RAID6)</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>Mirroring (RAID1)</td>
<td>2</td>
</tr>
<tr>
<td>Striping (RAID0)</td>
<td>4</td>
</tr>
</tbody>
</table>
Advantages of Balancing

Processing when TPP is expanded (physical disks are added)

Even after expansion, the accesses from server are evenly distributed.
Key take away for Thin Provisioning

- TP is spreading the data among all drives in the pool
- The more raid groups in the pool the better the performance of the pool is
- Raid Level and geometry needs to be unique in the pool
- Rebalancing ensures data is spread evenly in the pool after capacity enhancement
- Space reclamation is supported for various OS
- TP is a free of charge feature of the ETERNUS DX S3
Automated storage Tiering considerations
Optimal Data Allocation
Automated Storage Tiering (AST)

Optimal drive selection & automated data allocation improves performance and reduces cost.

Command for data relocation by monitoring access frequency.

- **ETERNUS SF Storage Cruiser**
- **ETERNUS DX100 S3/DX200 S3**
- **ETERNUS DX500 S3/DX600 S3**

Access frequency/Drive price

- **Tier 0**: Minimizes response time
- **Tier 1**: Reduces storage cost
- **Tier 2**

Copyright 2014 FUJITSU

Optimized to maximum efficiency with 252 MB Block Size.
Key take away for AST

- NL-SAS issues are not going away with AST
- Use media type and Raid level in the tiers according to customer requirements
- Use different AST pools for different SLAs and applications
- In the classic 3-Tiers environments try to get to 15% / 50% / 35% mix instead of 5% / 15% / 80% mix
Key take away for AST

- Flex Pools and Thin Pools are sharing the same concepts, including rebalancing
- You need to have a critical mass to use AST to get enough drives in the different tiers.
- Always calculate where your capacity is and where your IOs are, balance it reasonable.
- Don't forget restores and backup windows
Final take away

- Understanding the IO profile is key
- Writes are bad
- Write penalties exists
- More drives – more performance
- 2-Site Data mirroring does not make it faster
- Cache Hits are extremely important
Questions & Feedback
Data is OUR Domain.